A
Short Introduction

to the
SiMuIPBro®Core

Earle Jennings, CTO
QSNM, LLC, Santa Fe NM and
QSigma, inc, Denton, Texas
+1(510)292-8328
ewj@ix.netcom.com

All information contained herein is taken from documents pending before at least the US Patent and Trademark Office

| m ag i n e your computers

% Are 100% invulnerable to cyberattack (including Al)
% Use 5% (or less) energy
W Can still run everyone’s legacy software

% Can scale from edge devices to supercomputers

This is our vision at QSigma, Inc
And we are ready to change the world!

Introducing the SiMulPro Core

The Simultaneous Multi-Processor (SiMulPro) core is a non-von Neuman computer
architecture replacing general purpose micro-processors

The SimulPro core eliminates the cyber-security vulnerabilities of today’s micro-processors
SiMulPro core implementations, comparable to a 64 bit micro-processors operate at 2% - 5%
of the power, in part by removing the need for energy wasteful caches,
superscalar interpreters, and out of order execution mechanisms
The SiMulPro core is a software defined entity that is compiled from loops, functions and
programs into multiple simultaneous processes in hardware. Truly general purpose,
it scales from wrist watches and medical devices to supercomputers

Application compatiblity insures legacy software support with minimal compile time changes

QSigma has 13 issued patents, 4 published papers, and a simulation of a SiMulPro core

How Did We Do This?

Earle Jennings and his team worked for over 20 years incorporating and

extending hardware software co-design to include:

Semiconductor design, verification, and test

Software application development

Operating systems and compiler technologies

Applied mathematics, including systems analysis, numerical analysis, formal methods,
graph theory, and the semantics of computer languages

These disciplines are consistently applied at every level from the standard cells of
target logic, to application support, and the entire system design with it’s requirements
By taking into account all of the above perspectives, a set of computer languages were selected and
defined as the implementation language set.

This allows semantically equivalent models to be built and tested supporting simultaneous,
nearly independent projects for circuit development, compiler development,
application tool development, and operating system implementation.

Today these projects are often stalled by the circuit development project.

No oneelse has redesigned computers from scratch. We have no competition.

An Example of What Our Methodology Reveals

With current compilation methodologies there is no effective way to know whether a data pointer in a program
is pointing to a legitimate address or not. This leads to vulnerabilities in the function return stack and the buffer

overflow, among others.
Compiler’s View

This drawing shows a typical data memory layout 0 2n 0 2n 0 2n 0 2n o
as show in Engineering a Compiler 3rd ed. § % g* § § é §+ § § % §_+ fg % % §+ § amual
by Cooper and Torczon, p 254, 2023 SE2 .2 8852 .5 358 .8 358 -8 ol
Operating
sode . ‘ , e System’s
0 Hardware’s View large View

“The heap and the stack grow toward each other...From the compiler’s
perspective, this virtual address space is the whole picture. However, modern

Free :nemory computer systems typically execute multiple programs in an interleaved fashion.
. S . The operating system maps multiple virtual address spaces into a single physical
OysanicAliocsion address space supported by the processor.” pp 254-255
Stack Today, there is no efficient way to know at the hardware level,

whether tweaking the operating system environment, a minor
typo in the source code of a program, or function, may trash this

This is called a virtual address space layout, which is divided into
intricate interleaving.

four categories of storage shown as code, static, heap and stack
Cybersecurity adversaries can, and do, exploit this.

Energy Savings Estimate for an Example
General Purpose SimulPro Core

A module instance of the core block diagram (shown on the Block Diagram slide), with the
following parameters (shown on the Overview of Stripes slide):

* Data Access Unit Length = 8 bytes

» Up to 32 data access requests for both write and read issue from the 4 stripes of Data Processor 1 as 32 read and 32 write access requests
from Coordinator Out to Auto Pipe 2

* Pipe clock frequency of 100 Million Hertz (MHz)

The maximum performance for this core module instance:
*FP80 operations (6.4 Gflops)

*FP64 operations (12.8 Gflops) Int64 operations (12.8 Gops)

*FP32 operations (25.6 Gflops) Int32 operations (25.6 Gops)

*FP16 operations (51.2 Gflops) Int16 operations (51.2 Gops)

*FP8 operations (102.4 Gflops) Int8 operations (102.4 Gops)
Point of Comparison:

Today, a typical 64 bit microprocessor has a data access unit length of 8 bytes, and typically runs between 2 to 4 GHz
clock frequency

The SimulPro core, operating at 100 MHz, is estimated to operate at about 2% to 5% of the energy of the 64 bit
microprocessor, assuming comparable performance, die size (area) and sheet capacitance.
This 2% to 5% is roughly the ratio of 100MHz / 2 to 4 GHz

Cybersecurity Adversary Defined

An Adversary is anything that has the ability to:
-Execute and control the input of user programs in an operating system

-Gain operating system privileges over time without immediate detection
-security features alterable by system privileges are vulnerable

-Alter compiled code at the assembly language level
-Alter manufacturing processes and inject back doors into hardware

-Configure data memory device that installs malware altering task
and/or program information when connected

-Send data messages that install malware altering task and/or program information

Cybersecurity Summary of SiMulPro Core

Cybersecurity attacks that cannot happen by design
e Attacks altering instructions in a program
e Attacks altering function return stack
e Attacks using data leakage from leftover state after a program runs

Detected and stopped using new circuits

® Read before write attacks

Detected and stopped using new circuits and compiler stage tools
e Attacks using buffer overflow
e Attacks using illegal pointer references
Dynamic allocation related attacks
e Attacks writing to Read Only Memory
® Object oriented specific attacks

Prevented in design process using the SiMulPro core’s operating features

e Generation of back doors in chips

3/28/2025 8

Examples of How the SiMulPro Core Defeats Attacks

Attacks that Alter Instructions in a Program

No single address space in the core holds all instructions
® Each instruction memory of each instructed resource is in a
separate address space
® Each instruction memory is contained in a separate module,
which can only be accessed within that module

No program, whether compiled or assembled, running
on this core, can read or write any instruction memories
® Executing a program does not require the program being able to
read or write it's instruction memory
®Only hardware running the program needs to read these instruction
memories, not the program being executed

Buffer Overflow Attacks

The SiMulPro core requires the following
® Restructuring the compiler code generation to create
contiguous memory domains from the compiler,
operating system, and hardware perspectives
® These contiguous memory domains support fast,
cheap runtime testing of buffer boundaries and
program data memory domains

The runtime testing detects buffer
overflow attacks, and illegal program
data memory access

® Once detected. a hardware fault is injected in the
Task Wave Front (TWF)

® Once the Task Wave Front with the injected hardware
fault is received by the Operating System Execution
Module (OSEM), it can terminate running the program
by altering the TWF that is driving the SiMulPro core

Security Features of the SiMulPro core are inherent and cannot be turned off

Al Can Be 100% Invulnerable to Cybersecurity Attacks

Replace all CPUs with SiMulPro cores, including all CPUs in GPUs and in TPUs,
making them all invulnerable to attack.

The operating system becomes hardware, the Operating System Execution Module,
embodied in a SiMulPro core, operating in real Realtime and invulnerable to attack

All controllers, microprocessors, or state machines can be replaced by realtime SiMulPro cores

Flexible crossbar switches give performance with speed on each clock cycle
All active source requests are always delivered to requested targets in one clock cycle,
eliminating the possibility of asymmetric/unpredictable message delays
A bonus: Energy inefficient caches and buses are no longer required

SiMulPro cores are simpler to design, simpler to build,
simpler to program, and debug, than any other approach

Simultaneous Multi-Processor Core Block Diagram

r_Cg'_eQut_S_ta_t_es________________
Core Input
I 2oy Host Interface, Core Interface and/or Task Wave Front Out
I Lore In States > . : €Tk Wave Front 4
. . Task Wave Front 0 = Operating System Execution Module
I Instruction Pipe 0 Jask Wave Front In
I Data Processor 0 <
: IMnes;:’gf;lgno lul--Ta-slk|W?YguF!2r!t¢1-||-||-||-||Ilnnlnn-u--u) lnStrUCtion Pipe1 g::e l| Auto Pipe 2
H —
I Execution A\ Execution Wave Front 1 Data Processor 1 Coordinator Out : Nonlinear
Wave Front 0 2 Nonlinear Processor
| Instruction (Output, Feedback Request
Program Function Memory b 1 . .2 Packet Data Memory Array
| Branch Controller SEREI in, Moo Request Processor
| -) Request Processor) Write q pe
Prog fasn: I:u nction Execution Request Dynamic Pointer
ate i
: Function Return fha;t::rl;i?t:::sk Auto Pipe 3 —>wm Lt |ngg:::;:::g: gl?try ::::et Manager
I Shack Data Memory Fifos S | Request . Data :‘;mc'tfy e
> Pack equest Router
| S Data Reset Detector aceet Dynamic Access
I Virtual Function = Data Ram Verifier
Table Fifo Peeks or Pops Core In Fifo States - Reset Vector> Program Data
| - - Jp- & Output Data . Task Wave F 2
Program Configuration e e Memory
l Memory TaskwaveF'rQnt3 _II-II-II-II-II-II-II-II-II-II> Readon'y
I GlobaloffsetTable v ElrEmIIEIIEIIEIE IS LTI ErTIE I EYIE I . Dah
| Function (Input, Feedback Coreln S Nonlinear Output Fifo Nonlinear Out
i Configuration & Read interface) s States & OutputData € Read Before
H _) Communication Write Detector
I emory In':tructlon ol In Data + States < Read Result Packet
Function emory i
[ez Codrdingtor Feedback Input Fifgs Sync Data
| Memory In Al
[Coordinator In o Feedback Tunnels for Data and Decision Vectors
Core In States Jg
: corelnput : ;-Ials-klI-vIIErloln-l4l-ll-ll-ll-ll-lI-II-II-II-II-II-Il-Il-II-II-lI-Il.ll.liIll-ll-lI-
L — Core Qut States from Host, Other Core(s) or Modules_ _ _ _ _ _ _ J

Overview of Stripes in Instruction Pipes 0 & 1

Instruction Pipe 0 Instruction Pipe 1
| | | 1
Stripe I DataProcessor0 | I Data Processor1 | Stripe
Arithmetic (0x20 : 20 + Km)
Feedback Out, Read 32 0-7, Core In 0-7
NonLinear Out [0]

Arithmetic (0 : Km) Feedback In, Read, Write 0 - 7, Core Out 0 - 7, Non-Linear [0]

Feedback Out, Read 32 8-f, Core In 8-7 Arithmetic (0x28 : 28 + Km)

NonLinear Out [1]

|\

Arithmetic (8 : 8 +Km) Execution Feedback In, Read, Write 8 - f, Core Out 8 - f, Non-Linear [1]

Feedback Out, Read 32 10-17, Core In 10-17 Wave Front 1_s, Arithmetic (0x30 : 30 + Km)

NonLinear Out [2]

Arithmetic (0x10 : 10 + Km) Feedback In, Read, Write 0x10 - 17, Core Out 0x10 - 17, Non-Linear [2]

o e
Feedback Out, Read 32 18-1f, Core In 18 - 1f, PRI (062 30)

|

NonLinear Out [3] Arithmetic (0x18 : 18 + Km) Feedback In, Read, Write 0x18 - f, Core Out 0x18 - 1, Non-Linear [3]
Coordinator in | L Coordinator Qut |
Auto Pipe 2 Km = 1, Arithmetic [k] Auto Pipe 2 _ Km = 3, Arithmetic [k
Program Data Memory in Data Proccessors 0 & 1 Program Data Memory in Data Proccessors 5 i 1
: ; ; . : Arithmetic 1 [k
SiMulPro Data Access Unit . Arithmetic 0 [k] SiMulPro MR ACCESIMCS S Integer 8,16 32]
core 1 Length = 1 byte Integer 8,16 core 2 Length = 2 byte Floating Point 8,16,32
Auto Pipe 2 Km = 7, Arithmetic [k] Auto Pipe 2 Km =7, Arithmetic [k]
Program Data Memory in Data Proccessors 0 & 1 Program Data Memory in Data Proccessors 0 & 1
SiMulPro Data Access Unit Suitfimery: 2 () SiMulPro Data Access Unit Attimetic S 4]

—_— Integers 8,16,32,64 P » Integers 8,16,32,64
core 3 Length = 4 byte Floating Point 8,16,32,64 core 4 hy e Floating Point 8,16,32,64,80

Operating System Embodied as SiMulPro Core Hardware

: : OSEM Task Pr e e e e e e e s e e iy
Operating Systerp Execution Wavefront o vfl):vilrlront . OSEM .
Module (OSEM) SiMulPro Core n i' Module |

i OSEM Task X OSEM Monitor !
Auto Pipe 2 Wavefront - Task Wavefront Out !
— Out bt sem: sems smm: sem: smmy smms smms sems smms smms owdd
Priority Queue(s)
_ OSEM Out —>» Network
Scheduled Task List 1

Scheduled Task List . ..
TFask :ﬂ:’aw: > T:sk r\:av:a
ront In ront In .
- - SiMulPro Core Instance 1
Task Wave Task Wave
B Smm—

Task Wave Task Wave Front Out_1 Front Out_1 Core 11n Core 1 Out
Frontin_0 Front Out_0 T i
Task Wave Task Wave Core 0 In |«
Front In_0 Front Out_0 Data Network

SiMulPro Core Instance 0 Core 0 Out .

SiMulPro Cores Secure Data Centers

SiMulPro cores protect data centers by replacing one general purpose network
with two non-overlapping networks, one for data traffic and one for task,
configuration, control, and monitoring traffic, completely separating data
traffic from task, configuration, control and monitoring traffic

Neither network can sense the other network’s traffic. Viruses and rootkits
may get into a system via the data network, but they cannot affect (infect)
the task/configuration network, nor the instructions of any receiving
SiMulPro core

OSEM SiMulPro cores implement any operating system as hardware running
each application on data processing SiMulPro core(s)
Each of these cores implement all of the SiMulPro core security features

SiMulPro core Energy usage is estimated to be 2-5% of standard
microprocessors

NEXT STEPS

QSigma is seeking $500,000 to build an emulation of a SiMulPro core designed for edge devices.
This core will make the following insecure devices, among others, 100% cybersecure, low power, ease of programming,

and scalable:
Augmented Reality (AR)
Autonomous Vehicles
Medical Devices
loT in Homes and Smart Factories
Surveillance and Security
Traffic Management and Navigation Systems
Video Streaming

This money covers the purchase of test/development tools, FPGA expert support, as well as, compiler support to fix
standard code generation problems including pointer/buffer related issues. The compiler will automate translation of
C functions and programs by generating the contiguous memory domains required for runtime hardware fault detection

and the efficient porting of legacy software.

Once the prototype can be demonstrated, we plan to license this technology to,
or be acquired by, an existing company.

