YA’O‘ (M

wtonngon,

Hello! I'm Earle Jennings. This presentation introduces a fundamentally new
computer architecture in terms of:

Application compatibility with an existing superscalar microprocessor,
Minimization of energy use, and

Optimized local Sparse Matrix Manipulation

QSigma began researching computer architectures in 2001.
Gradually our search narrowed to a single hay stack.

SiMulPro
core module

This is called a Simultaneous Multi-Processor - SiMulPro core module.
Application compatibility, results from semantic compatibility, with the
microprocessor.

The superscalar instruction interpreter and multi-thread controller are converted into
software tools.

Instruction caching disappears through an innovation in VLIW instruction processing.
Sparse matrix operations, and neural network modeling, are locally performed in the
core modules and require no data caching.

Today’s high performance, superscalar microprocessor, includes all of the elements
of this frame.

The blue box, includes the superscalar instruction interpreter, the caches, and the
multi-thread controller.

Instruction |

processing e Caches
circuitry IS NEICEREREREIN
surface area A RSN

More than 90% of the silicon
& more than 90% of the power
is not used for processing data

Data processing surface area

Only the green box with the data processing resources, actually processes the data!
It is a small part of the silicon and power usage!

Removing the blue box components provides, at least, a 10X reduction in surface
area and energy consumption.

In order to remove that overhead, while remaining application compatible, a new
processor must be semantically compatible with the existing microprocessor.

ASM Code

This is an example of semantic compatibility.
Each assembly code program

ASM Code

Generates an application in each these targets

ASM Code

Which, when stimulated by the same input stream

ASM Code

generate essentially the same output streams.

Simultaneous process state calculator

Parallel process state [*o .. e Sequential process state

First local Second local
instruction processor instruction processor

First local instruction Second local instruction

N Second
instructed resource

Here is a very simple SiMulPro Core

10

Simultaneous process state calculator

Parallel process state Sequential process state
First local - Second local
instruction processor o instruction processor

First local instruction Second local instruction
First - Multiplication = Second
instructed resource ¢ P . instructed resource

Which implements a process state calculator

11

Parallel process state Sequential process state [
First local Second local .
instruction processor instruction processor

First local instruction Second local instruction
First - Multiplication = Second

instructed resource ¢ P . instructed resource
Fo o (r circu

Cul

issuing process states for executing these processes.

12

Simultaneous process state calculator

Parallel process state Sequential process state [

First local Second local L
instruction processor instruction processor 7o
First local instruction e Second local instruction [

- S v
g | First \J » Multiplication Second
©. & instructed resource] P nstructed resource

Number

Each simultaneous process, separately owns the instructed resources of the core.

Each instructed resource, includes a local instruction processor.

13

Simultaneous process state calculator

Parallel process state Sequential process state [

First local . Second local L
instruction processor |*J instruction processor 7o
First local instruction e Second local instruction [

o W Ve
g | First \J » Multiplication Second
©. & instructed resource] P nstructed resource

The state of the owning process stimulates each owned, local instruction processor.

Each instruction processor accesses local instruction memory for its resource

14

Parallel process state Sequential process state [
First local Second local .
instruction processor instruction processor

First local instruction)' | Second local instruction
First - Multiplication = Second

instructed resource ¢ P . instructed resource
Fo o (r circu

Cul

To generate a local instruction which directs the resource.

15

Simultaneous process state calculator

Parallel process state Sequential process state [
First local Second local L
instruction processor instruction processor 7o

First local instruction e Second local instruction |-
5 L

First | N Multiplication) second
instructed resource [] P -1 7 instructed resource

Number

Each process owns separate instructed resources, like an adder, so that the processes
do not stall each other.

16

“3

i

G E 5 5
2 2 2 |8
s Jw |~ =

:
J

SH
H

Here is an example use of this SiMulPro core.

Assume that the first and second processes each have a range of 8 process states (or
local instructions).

17

First Second First Second First Second First Second
instance 0 | instance 0 instance 2 | instance 0 instance 4 | instance 0 instance 6 | instance 0
First Second First Second First Second First Second
instance 0 | instance 1 instance 2 | instance 1 instance 4 | instance 1 instance 6 | instance 1
First Second First Second First Second First Second
instance 0 | instance 2 instance 2 | instance 2 instance 4 | instance 2 instance 6 | instance 2
First Second First Second First Second First Second First Second
instance 0 instance 0 instance 0 | instance 3 instance 2 | instance 3 instance 4 | instance 3 instance 6 | instance 3
First Second First Second First Second First Second First Second
instance 1 instance 1 instance 0 | instance 4 instance 2 | instance 4 instance 4 | instance 4 instance 6 | instance 4
First Second First Second First Second First Second First Second
instance 2 instance 2 instance 0 | instance 5 instance 2 | instance 5 instance 4 | instance 5 instance 6 | instance 5
First Second First Second First Second First Second First Second
instance 3 instance 3 instance 0 | instance 6 instance 2 | instance 6 instance 4 | instance 6 instance 6 | instance 6
First Second First Second First Second First Second First Second
instance 4 instance 4 instance 0 | instance 7 instance 2 | instance 7 instance4 | instance 7 instance 6 | instance 7
First Second
instance 5 instance 5 First Second First Second First Second First Second
First Second instance 1| instance 0 instance 3 | instance 0 instance 5 | instance 0 instance 7 | instance 0
instance 6 | | instance 6 First Second First Second First Second First Second
First Second instance 1 | instance 1 instance 3 | instance 1 instance 5 | instance 1 instance 7 | instance 1
instance 7 instance 7 First Second First Second First Second First Second
instance 1| instance 2 instance 3 | instance 2 instance 5 | instance 2 instance 7 | instance 2
First Second First Second First Second First Second
instance 1 | instance 3 instance 3 | instance 3 instance 5 | instance 3 instance 7 | instance 3
First Second First Second First Second First Second
instance 1| instance 4 instance 3 | instance 4 instance 5 | instance 4 instance 7 | instance 4
First Second First Second First Second First Second
instance 1 | instance 5 instance 3 | instance 5 instance 5 | instance 5 instance 7 | instance 5
First Second First Second First Second First Second
instance 1 | instance 6 instance 3 | instance 6 instance 5 | instance 6 instance 7 | instance 6
First Second First Second First Second First Second
instance 1 | instance 7 instance 3 | instance 7 instance 5 | instance 7 instance 7 | instance 7

A VLIW memory, supporting these same independent operations, requires a much
larger memory, of 64 VLIW instructions.

First Second First Second First Second First Second
instance 0 | instance 0 instance 2 | instance 0 instance 4 | instance 0 instance 6 | instance 0
First Second First Second First Second First Second
instance 0 | instance 1 instance 2 | instance 1 instance 4 | instance 1 instance 6 | instance 1
First Second First Second First Second First Second
instance 0 | instance 2 instance 2 | instance 2 instance 4 | instance 2 instance 6 | instance 2
First Second First Second First Second First Second First Second
instance 0 instance 0 instance 0 | instance 3 instance 2 | instance 3 instance 4 | instance 3 instance 6 | instance 3
First Second First Second First Second First Second First Second
instance 1 instance 1 instance 0 | instance 4 instance 2 | instance 4 instance 4 | instance 4 instance 6 | instance 4
First Second First Second First Second First Second First Second
instance 2 instance 2 instance 0 | instance 5 instance 2 | instance 5 instance 4 | instance 5 instance 6 | instance 5
First Second First Second First Second First Second First Second
instance 3 instance 3 instance 0 | instance 6 instance 2 | instance 6 instance 4 | instance 6 instance 6 | instance 6
First Second First Second First Second First Second First Second
instance 4 instance 4 instance 0 | instance 7 instance 2 | instance 7 instance4 | instance 7 instance 6 | instance 7
First Second
instance 5 instance 5 First Second First Second First Second First Second
First Second instance 1| instance 0 instance 3 | instance 0 instance 5 | instance 0 instance 7 | instance 0
instance 6 | | instance 6 First Second First Second First Second First Second
First Second instance 1 | instance 1 instance 3 | instance 1 instance 5 | instance 1 instance 7 | instance 1
instance 7 instance 7 First Second First Second First Second First Second
instance 1| instance 2 instance 3 | instance 2 instance 5 | instance 2 instance 7 | instance 2
First Second First Second First Second First Second
instance 1 | instance 3 instance 3 | instance 3 instance 5 | instance 3 instance 7 | instance 3
First Second First Second First Second First Second
instance 1| instance 4 instance 3 | instance 4 instance 5 | instance 4 instance 7 | instance 4
First Second First Second First Second First Second
instance 1 | instance 5 instance 3 | instance 5 instance 5 | instance 5 instance 7 | instance 5
First Second First Second First Second First Second
instance 1 | instance 6 instance 3 | instance 6 instance 5 | instance 6 instance 7 | instance 6
First Second First Second First Second First Second
instance 1 | instance 7 instance 3 | instance 7 instance 5 | instance 7 instance 7 | instance 7

This right hand side is characteristic of the Multiflow, and the EPIC architecture,
which led to the I-64 and Itanium.

First Second First Second First Second First Second
instance 0 | instance 0 instance 2 | instance 0 instance 4 | instance 0 instance 6 | instance 0
First Second First Second First Second First Second
instance 0 | instance 1 instance 2 | instance 1 instance 4 | instance 1 instance 6 | instance 1
First Second First Second First Second First Second
instance 0 | instance 2 instance 2 | instance 2 instance 4 | instance 2 instance 6 | instance 2
First Second First Second First Second First Second First Second
instance 0 instance 0 instance 0 | instance 3 instance 2 | instance 3 instance 4 | instance 3 instance 6 | instance 3
First Second First Second First Second First Second First Second
instance 1 instance 1 instance 0 | instance 4 instance 2 | instance 4 instance 4 | instance 4 instance 6 | instance 4
First Second First Second First Second First Second First Second
instance 2 instance 2 instance 0 | instance 5 instance 2 | instance 5 instance 4 | instance 5 instance 6 | instance 5
First Second First Second First Second First Second First Second
instance 3 instance 3 instance 0 | instance 6 instance 2 | instance 6 instance 4 | instance 6 instance 6 | instance 6
First Second First Second First Second First Second First Second
instance 4 instance 4 instance 0 | instance 7 instance 2 | instance 7 instance4 | instance 7 instance 6 | instance 7
First Second
instance 5 instance 5 First Second First Second First Second First Second
First Second instance 1 | instance 0 instance 3 | instance 0 instance 5 | instance 0 instance 7 | instance 0
instance 6 instance 6 First Second First Second First Second First Second
First Second instance 1 | instance 1 instance 3 | instance 1 instance 5 | instance 1 instance 7 | instance 1
instance 7 instance 7 First Second First Second First Second First Second
instance 1| instance 2 instance 3 | instance 2 instance 5 | instance 2 instance 7 | instance 2
/ First Second First Second First Second First Second
instance 1 | instance 3 instance 3 | instance 3 instance 5 | instance 3 instance 7 | instance 3
First Second First Second First Second First Second
instance 1| instance 4 instance 3 | instance 4 instance 5 | instance 4 instance 7 | instance 4
First Second First Second First Second First Second
instance 1 | instance 5 instance 3 | instance 5 instance 5 | instance 5 instance 7 | instance 5
First Second First Second First Second First Second
instance 1 | instance 6 instance 3 | instance 6 instance 5 | instance 6 instance 7 | instance 6
First Second First Second First Second First Second
instance 1 | instance 7 instance 3 | instance 7 instance 5 | instance 7 instance 7 | instance 7

The Mill computer, shows some resemblance to the left hand side, but has only two
instruction pointers.

The SiMulPro core, supports factoring algorithms into their natural units, of up to 6,
or more, simultaneous processes, which operate based upon data availability.

This virtual VLIW space, removes the need for instruction caching.

First Second First Second First Second First Second
instance 0 | instance 0 instance 2 | instance 0 instance 4 | instance 0 instance 6 | instance 0
First Second First Second First Second First Second
instance 0 | instance 1 instance 2 | instance 1 instance 4 | instance 1 instance 6 | instance 1
First Second First Second First Second First Second
instance 0 | instance 2 instance 2 | instance 2 instance 4 | instance 2 instance 6 | instance 2
First Second First Second First Second First Second First Second
instance 0 instance 0 instance 0 | instance 3 instance 2 | instance 3 instance 4 | instance 3 instance 6 | instance 3
First Second First Second First Second First Second First Second
instance 1 instance 1 instance 0 | instance 4 instance 2 | instance 4 instance 4 | instance 4 instance 6 | instance 4
First Second First Second First Second First Second First Second
instance 2 instance 2 instance 0 | instance 5 instance 2 | instance 5 instance 4 | instance 5 instance 6 | instance 5
First Second First Second First Second First Second First Second
instance 3 instance 3 instance 0 | instance 6 instance 2 | instance 6 instance 4 | instance 6 instance 6 | instance 6
First Second First Second First Second First Second First Second
instance 4 instance 4 instance 0 | instance 7 instance 2 | instance 7 instance4 | instance 7 instance 6 | instance 7
First Second
instance 5 instance 5 First Second First Second First Second First Second
First Second instance 1| instance 0 instance 3 | instance 0 instance 5 | instance 0 instance 7 | instance 0
instance 6 | | instance 6 First Second First Second First Second First Second
First Second instance 1 | instance 1 instance 3 | instance 1 instance 5 | instance 1 instance 7 | instance 1
instance 7 instance 7 First Second First Second First Second First Second
instance 1| instance 2 instance 3 | instance 2 instance 5 | instance 2 instance 7 | instance 2
First Second First Second First Second First Second
instance 1 | instance 3 instance 3 | instance 3 instance 5 | instance 3 instance 7 | instance 3
First Second First Second First Second First Second
instance 1| instance 4 instance 3 | instance 4 instance 5 | instance 4 instance 7 | instance 4
First Second First Second First Second First Second
instance 1 | instance 5 instance 3 | instance 5 instance 5 | instance 5 instance 7 | instance 5
First Second First Second First Second First Second
instance 1 | instance 6 instance 3 | instance 6 instance 5 | instance 6 instance 7 | instance 6
First Second First Second First Second First Second
instance 1 | instance 7 instance 3 | instance 7 instance 5 | instance 7 instance 7 | instance 7

All predecessor VLIW approaches require unique compilers, which negate application
compatibility.

First Second First Second First Second First Second
instance 0 | instance 0 instance 2 | instance 0 instance 4 | instance 0 instance 6 | instance 0
First Second First Second First Second First Second
instance 0 | instance 1 instance 2 | instance 1 instance 4 | instance 1 instance 6 | instance 1
First Second First Second First Second First Second
instance 0 | instance 2 instance 2 | instance 2 instance 4 | instance 2 instance 6 | instance 2
First Second First Second First Second First Second First Second
instance 0 instance 0 instance 0 | instance 3 instance 2 | instance 3 instance 4 | instance 3 instance 6 | instance 3
First Second First Second First Second First Second First Second
instance 1 instance 1 instance 0 | instance 4 instance 2 | instance 4 instance 4 | instance 4 instance 6 | instance 4
First Second First Second First Second First Second First Second
instance 2 instance 2 instance 0 | instance 5 instance 2 | instance 5 instance 4 | instance 5 instance 6 | instance 5
First Second First Second First Second First Second First Second
instance 3 instance 3 instance 0 | instance 6 instance 2 | instance 6 instance 4 | instance 6 instance 6 | instance 6
First Second First Second First Second First Second First Second
instance 4 instance 4 instance 0 | instance 7 instance 2 | instance 7 instance4 | instance 7 instance 6 | instance 7
First Second
instance 5 instance 5 First Second First Second First Second First Second
First Second instance 1 | instance 0 instance 3 | instance 0 instance 5 | instance 0 instance 7 | instance 0
instance 6 | | instance 6 First Second First Second First Second First Second
First Second instance 1 | instance 1 instance 3 | instance 1 instance 5 | instance 1 instance 7 | instance 1
instance 7 instance 7 First Second First Second First Second First Second
instance 1| instance 2 instance 3 | instance 2 instance 5 | instance 2 instance 7 | instance 2
First Second First Second First Second First Second
instance 1 | instance 3 instance 3 | instance 3 instance 5 | instance 3 instance 7 | instance 3
First Second First Second First Second First Second
instance 1| instance 4 instance 3 | instance 4 instance 5 | instance 4 instance 7 | instance 4
First Second First Second First Second First Second
instance 1 | instance 5 instance 3 | instance 5 instance 5 | instance 5 instance 7 | instance 5
First Second First Second First Second First Second
instance 1 | instance 6 instance 3 | instance 6 instance 5 | instance 6 instance 7 | instance 6
First Second First Second First Second First Second
instance 1 | instance 7 instance 3 | instance 7 instance 5 | instance 7 instance 7 | instance 7

The SiMulPro cores are semantically compatible with the existing microprocessor,
sharing established, compiler tools through the assembly code, generation stage.

Asm code program Fortran compiler

Microprocessor 2nd target
1stimplementation 2nd implementation

put stream put stream

Here is a first step in verifying, compiler compatibility. Let’s look at a C compiler.

23

Source code

Asm code program Fortran compiler

Microprocessor 2nd target
1stimplementation 2nd implementation

It has a compiler, test set, used to confirm code generation, targeting the
microprocessor.
This compiler test set

24

e

C++ compiler

TG OEREE Fortran compiler

Microprocessor 2nd target

1stimplementation 2nd ImEementation

put stream put stream

can also be used to confirm the 2" target from its assembly code programs.

25

Asm code program

Asm code program

Microprocessor
1stimplementation

Output stream

A 2" step adds C function libraries and verification sets.

C compiler test set

Cstandard
function library
&verification set

2ndtarget
2nd implementation

26

Source code C compiler test set
E=n

Cstandard

Fortran compiler function library
ncoas Rrodrary &verification set

Verification and test suite

Verification/test program
Asm code program

e
Microprocessor 2nd target
1stimplementation 2nd implementation

The 3 step starts from the compiler, output, opcode range

27

Source code C compiler test set
E=n

Cstandard

Fortran compiler function library
ncoas Rrodrary &verification set

Verification and test suite

Verification/test program
Asm code program

Microprocessor 2nd target
1stimplementation 2nd implementation

Output stream

and extends to include more, possibly all, of the instruction set architecture.

28

FP SiMulPro Execution Wave Front

.-----...-...--.-.---.-.-.-.---.....--.-.-.)

Instruction

pipeline Pipe 0 Pipe 1 Pipe 2 Pipe 3 Pipe 4

Fused
multiplier
C-adder 0

Fused
multiplier
C-adder 1

13]]043U0D Yse) 210D

Semantic compatibility tends to require, a fused multiply-accumulate capability, in
Floating Point operations.

Fused Multiplier C-Adders, support not only Floating Point, but also Posit Arithmetic,
in at least three precisions 64, dual 32, & quad 16 bit.

Algorithms can go from coarse (16 bit), to finer and finest arithmetic (64 bit posit)
with reduced communication overhead and memory access for early iterations.
Neural networks can operate in 16 bit mode, providing 8 Floating Posit multiply-
accumulates per execution wave front.

29

Instruction
pipeline

0
o)
o
5
[l
=~
[a)
o
2
e
o}
=

Pipe 0

Pipe 1

Pipe 2

Pipe 3

Fused
multiplier
C-adder 0

Fused
multiplier
C-adder 1

Pipe 4

The Memory Access Processor supports all basic, access operations.

So during BLAS 3 local operations, as in Linpack, all NON-floating point cores can be

turned off

30

Instruction

pipeline Pipe 0 Pipe 1 Pipe 2 Pipe 3 Pipe 4
Pass

forward

Rd 1Q0&Q1 07
Rd2Q0&Q1
Rd3Q0&Q1 Fused

multiplier
C-adder 0

Fused
multiplier
C-adder 1

(o]
o)
o
5
[
=~
[a)
o
2
e
o}
=

The FP Ram is organized as 8 static ram blocks, of 512 words, each with one read, and
one write port.

These RAM can be programmed, to limit access collisions for local sparse matrix
operations, to about 2% of the time.

Each of the read ports, supports two queues, so that these collisions, do not
significantly stall the multipliers.

' Pipe0 Pipel Pipe2 Pipe3
Pass

forward

Rd1Q0&Q1 i
Rd2Q0&Q1
Rd3Q0&Q1 Fused

multiplier

Process state C-adder 0
calculator
Fused
multiplier

C-adder 1

0
o)
o
5
[l
=~
[a)
o
2
e
o}
=

On each clock cycle, the process state calculator generates

Pipe 4

32

Instruction

pipeline Pipe 0 Pipe 1 Pipe 2 Pipe 3 Pipe 4
Pass | Write0 |

forward

Rd1Q0&Q1 0-7 m

I8 [wie |
Rd3Q0&Q1 Fused

multiplier

Process state C-adder 0
calculator
Fused

multiplier
C-adder 1

N
@
@
5
(%)
=~
[a)
)
2
L
o}
©

K-th process index|
K-th loop outs

multiple process states (or indexes) and their corresponding loop outputs.
Assume each instructed resource includes 256 local instructions per task.
If k is 4, this is a virtual, VLIW instruction space of 4 Giga instructions.

If k is 6, this is 256 Tera instructions.

Instruction

pipeline Pipe 0 Pipe 1 Pipe 2

Mowsar
Rd1Q0&Q1

w10

Rd3Q0&Q1
Process state
calculator

0
9
)
5
[l
=~
[a)
o
2
e
0}
o

K-th process index|
K-th loop outs

Data is fed back, from instruction pipe 4

Pipe 3

Pass
forward
0-7

Fused
multiplier
C-adder 0

Fused
multiplier
C-adder 1

Pipe 4

34

Instruction

pipeline Plpe 0

Process state
calculator

N
@
)
5
(%)
=~
[a)
)
2
L
o}
©

K-th process index|
K-th loop outs

to output queues in pipe 2.

This provides a router-less feed interface to neighboring modules, less hardware =

less energy use.

Pipe 1

Pipe 2

Foutk
Q

Pipe 3

Pass
forward
0-7

Fused
multiplier
C-adder 0

Fused
multiplier
C-adder 1

Pipe 4

35

Instruction

pipeline Pipe 0 Pipe 1 Pipe 2 Pipe 3
Pess

forward

Rd1Q0&Q1 s

Rizo0a01 —
(Ra300e0] "s
Rd3Q0&Ql multiplier
Process state C-adder 0
calculator
Fused

multiplier
C-adder 1

(o]
o)
o
5
[
=~
[a)
o
2
e
o}
=

K-th process index|
K-th loop outs

Farther communications uses the STAR input, which is my second presentation,

Pipe 4

[Fink]

36

Instruction

pipeline ~ Pipe 0 Pipe 1 Pipe 2 Pipe 3
Pass

forward

Rd1Q0&Q1 s

R
Rd3Q0&Q1T Fused

multiplier

Process state C-adder 0
calculator
Fused

multiplier
STAR outk C-adder 1

(o]
o)
o
5
[
=~
[a)
o
2
e
o}
=

K-th process index|
K-th loop outs

and output data ports.

Process state changes, are based upon data availability,
from local sources,
or from elsewhere in a chip,
or across a computer floor.

Pipe 4

[Fink]

37

Instruction

pipeline Pipe 0 Pipe 1 Pipe 2 Pipe 3 Pipe 4
Pass | Write 0|

forward

Rd1Q0&Q1 07 [Write1]

1st process index REHAY Fused
us:
[Rd3Q020Q1 | multiplier [write3 |

Process state C-adder 0
calculator
= Fused [Fink |

multiplier

STAR outk C-adder 1 STARink

K-th process index| Rcp/Rsq input
Rep/Rsq output Range clamp in

K-th loop outs El i

(o]
9
o
5
7
=~
[a]
o
2
e
o}
=

Reciprocal and Reciprocal square roots are supported.
A range clamp circuit supports range limiting for computing transcendental functions.
Integer to float and float to integer are also supported.

Process ‘ C
calculator Process state O

0 Usage vector 0 |
rocess direction

|

Overall

usage

vector
calculator

Process

calculator Process state 1
! Usage vector 1

Within each execution wave front,

Use vector

39

Process

Process direction (
calculator Process state O
0 Usage vector 0 |

Process direction
Process

calculator Process state 1
! Usage vector 1

a use vector is generated, of the used resources.

Overall

usage

vector
calculator

Use vector
T

40

Within that wave front, a use bit

41

drives a power gate

42

generating a gated power

43

for each instructed resource.

As the execution wave front traverses the resource, the gated power is used by that
resource.

In CMQOS, the clock may be gated to control power.

44

PEM task controller
Floating

point

core 0

Floating
point
core 1

Floating
point
core 2

Floating
point
core 3

Floating

point

shared .
* resourcezone -

PEM stands for Programmable Execution Module, roughly equivalent to a quad core
superscalar microprocessor,

without the overhead.
Instances of the same typed cores, such as Floating Point cores, can share their
instructed resources. This increases the virtual VLIW space.
Assume that 4 cores, support 6 simultaneous processes, and 256 instructions per
instructed resource.
The VLIW instruction space is 27(24*8) = 22 192 = 4 E57

45

PEM task controller
Patman * Integer * Floating
core . core = point
0 . 0 . core 0
Patman - Integer . Floating
core . core . point
1 . 1 . core 1
Patman - Integer . Floating
core . core . point
2 : 2 . core 2
Patman © Integer ° Floating
core . core * point
3 - 3 . core 3
Patman . Integer . Floating
shared . shared | point
resource ° resource * shared .
zone * zone - resourcezone -

There are 3 types of cores in each PEM, floating point, integer and a pattern manager
(Pat man) core.
The integer core implements the necessary arithmetic required for application
compatibility,
and also keeps track of the indexing associated with every word of the floating point
memory,

for local sparse matrix operations.
Pat man organizes and directs Floating Point and integer activities needed for these
operations.

PEM task controller

Core - Patman * Integer - Floating
module -« core * core - point
0 . 0 . 0o - core 0

Each core module, with its three cores, can operate as a unit.
Core module 0 may be performing a simulation of one object.

47

PEM task controller |

Core - Patman ' Integer * Floating
module - core * core - point
0 . 0 . 0o core 0

Core . Patman - Integer . Floating
module | core . core . point
1 . 1 . 1 . core 1

While core module 1 may be simulating a second kind of model.

PEM task controller |

Core Patman ° Integer * Floating
module -« core * core - point
0 . 0 . 0 . core 0
Core . Patman - Integer . Floating
module | core . core . point
1 . 1 . 1 . core 1
Core . Patman . Integer . Floating
module core . core . point
2 . 2 . 2 . core 2
Core * Patman | Integer ! Floating
module - core . core - point
3 . 3 - 3 . core 3

Patman . Integer . Floating
shared . shared | point

resource ° resource shared .
zone * zone - resourcezone -

Alternatively, each core module may be configured to model the same object, but at
differing geometric locations.
Let’s look briefly at software development.

The compiler is basically unchanged between software development, today and
tomorrow.

50

Software
Development
Today

Software
Development
Tomorrow

Source code Source code
Compiler Compiler
ASM code ASM code

Assembler Thread collector

Relocatables X
Linkage editor
Loaded file(s)

The superscalar interpreter hardware, is transformed into the thread collector,
which translates assembler instructions into micro-code.

The microcode is then scheduled, as close to the start of the thread, as allowed by its
preceding, assembler instructions.

This utility outputs one or more thread, source code, files.

52

The multi-thread controller, becomes a software utility, which merges and places the
threads

53

into configurations of the PEM.

54

The farther network, and router-less, neighbor communications, are then configured

55

for each Data Processor Chip in the system.

56

Software
Development
Tomorrow

Software
Development
Today

Source code Source code
Compiler Compiler
ASM code ASM code
Assembler Thread collector
Relocatables Thread source code
Linkage editor Thread merge and place
Loaded file(s) PEM configuration

Communication configuration

DPC configuration

System configuration

Configuring the system also involves

Configuring anticipating, memory controllers, interfaced to DRAM.

Configuring communication within the Data Processor Chips to across the system,

As well as communicating with the Data Center, in which the supercomputer resides.

Thread collection
verification set

The verification and test sets for today’s, superscalar instruction interpreters,
become the thread collection, verification set.

58

The verification and test sets
used to make
today’s microprocessor

Thread collection
verification set

Thread collector
compile-time utility

The superscalar interpreter’s behavioral model is transformed into the thread
collector.
This removes the interpreter from hardware, and its energy budget.

59

The verification and test sets
used to make
today’s microprocessor

Thread collection
verification set

Thread collector
compile-time utility
Verified thread
collector utility

Exercising this verification set,
and the utility,
generates a verified thread collector.

60

The microprocessor is thoroughly exercised by its verification and test sets.

61

Semantic compatibility
verification set

This is transformed into the semantic compatibility, verification set for the new,
software development tools.

62

The verification and test sets
used to make
today’s microprocessor

Semantic compatibility
verification set

Semantically compatible
SiMulPro cores

Behavioral models of the data processing resources are injected into templates, to
create the core module.

63

The verification and test sets
used to make
today’s microprocessor

Semantic compatibility
verification set

Semantically compatible
SiMulPro cores
Verified semantically
compatible SiMulPro cores

Exercising the verification set with the core module generates the verified,
semantically compatible core module.

64

The verification and test sets
used to make
today’s microprocessor

Semantic compatibility
verification set

Semantically compatible
SiMulPro cores
Verified semantically
compatible SiMulPro cores
Verified semantically
compatible PEM

Verifying these core modules creates the semantically compatible PEM.
Today, a thread of execution, is the smallest sequence of program instructions,

which can be managed independently, by a scheduler, in an operating system.

65

Instructed Dot product Filter one Filter two Calculate
resource accumulate process process maximum
process process
In queues Max-in queue
Product fdbk 1, Max-fdbk 2
Feedback queues
Dot accum 1ton to max-n
Memory read aueue Tap Read, FFT-coef read,
y q Firin FFT-pass data
Multiplier
C-adder 0 Yes Yes Yes Yes
C-adder 1
Memory write ports Fir-write accumulate
5 Dot accumulate CMax
Feedback in Feedback in FIR accumulate FFT accumulate Feedback in
Output portal Yes Yes Yes Yes

In this architecture,
threads are operations of at least one core, in a PEM,
expressed as one or more processes.

A program is transformed at compile-time, into the computer’s simultaneous

processes.

After collecting the threads,

the intermediate, program representation is analyzed, and thread merging begins.

66

DPaccumé

DPaccum5

DPaccum4

DPaccum1

DPaccumO

Merging processes is in terms of their respective process states,

67

DPaccumé
DPaccum5

DPaccum4

DPaccum?2

DPaccum1

DPaccumO

creating a merged process of the merged thread

FIRaccum2

FIRaccum1

FFTaccum2

68

[orocame] { s

The highest priority, process state is the top state. It has minimal probability.
Merging processes means

69

[orocame] { s

listing the highest priority states in the merged process.

70

oracams] { e

Merging continues in this way.

71

EEEEZE
Upper blocks

2 /s
%

J

Lower blocks
=44

This shows thread placement of a dense, matrix algorithm
as lower, diagonal and upper block threads.
Here, the integer and Pat Man cores are turned off.
The DPC has a 12 by 12 array of PEM, each including 4 FP cores with dual fused
Multiplier C-Adders.
There are 1152 fused Multiplier C-Adders of 64 by 64, or dual 32 by 32, or quad 16 by
16 FP or Posit arithmetic, generating results every ns.
Dense matrix by matrix operations, can proceed at the rate of the multipliers.

72

FP RAM contains Vector store 1:nVect

< Vector length >
Vector store 1 matrix A row 1
AGj || At | Al Alijlut) | Alijtum) |
Row lower part Diagonal parté Row upper part

A[i+1,j1]‘ ‘rt\[m,jzlm]f E‘A[i+1,i+1]‘5 * | Alij2u1] Alij2um]

Row lower part . Diagonal partE . Row upper part

...

Vector store 3:m matrix A row 1+2:1+m

Let’s briefly discuss sparse matrix manipulation in the core module.
Each core module often uses all the FP RAM, and at least % of the Integer RAM.
The FP RAM holds all the non-zero entries for several rows of the Matrix (A).

FP RAM contains Vector store 1:nVect

< Vector length

Vector store 1 matrix A row 1

Alij1] ‘ A[i,j1|m]‘£ © Al

| ALjTul] Alijlum] | -

Row lower part : - Diagonal part:

Row upper part

Each of these row entries includes

74

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store 1 matrix A row 1
Alijj1]] | Alij1im] ‘ Ali/i] ‘ ’ Alij1u1] . ’A[i,ﬂum] ’
Row lower part Diagonal part§ Row upper part

A lower part

75

FP RAM contains Vector store 1:nVect

< Vector length

Vector store 1 matrix A row 1

Alij1] ‘ A[i,j‘llm]‘: © Al ’ :’A[i,j1u1] Alijlum] | -
Row lower part - Diagonal part: Row upper part

A diagonal part

76

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store 1 matrix A row 1
Alijj1]] | Alij1im] ‘ Ali/i] ‘ ’ Alij1u1] . ’A[i,ﬂum] ’
Row lower part Diagonal part§ Row upper part

And an upper part.

77

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store m+1:nVect local Vector stores

The relevant entries of each vector are stored locally in vector stores in the FP Ram.

Vector store m+1:nVect local Vector stores D

Each of these entries

79

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store 1 matrix A row 1

Alij1] ‘ A[i,j1|m]‘£ Alii] E Alij1ul] Ali,jlum]

Row lower part : Diagonal part - - Row upper part

Vector store m+1:nVect local Vector stores

correspond to at least one non-zero A row entry.

80

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store 1 matrix A row 1

Alij1]] VA[i’j"m] ‘ Aliji] ‘ E ’A[i,j‘lu'l] ’A[i,j1um]’

Row lower part - Diagonal part: 5 Row upper part

M1 | A2l i A | Az |

Row lower part . Diagonal part * . Row upper part
Vector store 3:m matrix A row 1+2:1+m

Vector store m+1:nVect local Vector stores

Int RAM contains index store for each of the Vector store 1:nVect

Integer RAM holds the relevant indices for the corresponding entries of the FP RAM

81

FP RAM contains Vector store 1:nVect
< Vector length >
Vector store 1 matrix A row 1
Alij1]] Ali,j1im]] : Alii] 5 ’ AlijTul] ’ Ali,jTum] ’ -
Row lower part - Diagonal part: 5 Row upper part
Vector store 2 matrix A row 1+1
Ali+1,j1] ‘ }A[in,jzlm] - |A[i+1,i+1]‘ S ‘ Alijj2ul] ‘ Ali,j2um] ‘
Row lower part . Diagonal partE . Row upper part .
Vector store 3:m matrix A row 1+2:1+m
Vector store m+1:nVect local Vector stores
| Int RAM contains index store for each of the Vector store 1:nVect |

| PatMan RAM manages tables for each of the Vector and the index store 1:nVect |

Pat Man RAM contains the management tables for the FP and Int cores

82

FP RAM contains Vector store 1:nVect

Vector length

Consider HPCG:
A vector store length
of 27 can hold
the body and boundary components of the A matrix rows.
Making all the stores of the FP Ram this same size, removes the need for garbage
collection.

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store 1 matrix A row 1

Al 1]] 'An,mm]‘f DA ‘ ;]An,nun]A[Lﬂum]’f

Row lower part - Diagonal part: 5 Row upper part

A[i+1,j1]‘ }A[in,jzlml IA[i+1,i+1]] S ’A[i,jzm]‘ ‘A[i,j2um].

Row lower part . Diagonal partE . Row upper part

Vector store 3:m matrix A row 1+2:1+m

Each FP RAM of 4 K words supports 151 vector stores.

84

FP RAM contains Vector store 1:nVect

< Vector length >

Vector store 1 matrix A row 1

G| AG] | t | AGE |- o ATl AljTum]

Row lower part . - Diagonal part: - Row upper part

A[i+1,j1]‘ ‘rA[iH,jZIm]E Ali+1,i+1] | Alij2ul] Alij2um]

Row lower part . Diagonal parts . Row upper part

Vector store 3:m matrix A row 1+2:1+m

Vector store m+1:nVect local Vector stores

Assume that 25% of these stores are committed to the local components of the
vectors.

Then each core module can execute about 110 rows.

The only overhead is communication of vector updates, most of which are local to
the DPC.

The 48,384,000 rows of HPCG fit in 440 K PEM or about 744 DPC, filling about 1 rack.

The model never needs to leave the PEM. DRAM is read only once.

85

References

h eann A

1% A_My]mud_‘[umuau_gd, by Briggs, Henson & McCormick, © 2000 Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, US

28 Heroux, Dongarra and Luszczek, SANDIA REPORT, SAND2013- 8752, Published 2013, Sandia National Labs, US

3. Methods for Ling ms2™ed, by YousefSaad, © 2003 SIAM, Philadelphia, PA, US

4. Multigrid, by Trottenberg, Osterlee, Schueller, Stuben, Oswald & Brandt, © 2001 Academic Press, A Harcourt Science and Technology Company, San
Diego, CA, US

58 Matrix Computations 4*"ed, by Golub & Van Loan, © 2013 Johns Hopkins University Press, (Kindle Edition)Baltimore, Maryland, US.

6. Numerical Recipes in C (and Fortran and Pascal): The Art of Scientific Computing by Press, Flannery, Teukolsky & Vetterling, © 1988 Cambridge
University Press, Cambridge, England (This early edition of the book is listed because it and its two companions provided me the insight that all the
algorithms discussed therein required no more than a dozen separate instructions for each instructed resource)

7. The End of Error: Unum Computing (Chapman & Hall/CRC Computational Science), by Gustafson, © 2015 Taylor & Francis Group, CRC Press

Digital logic, ari icand archi es

il A Survey of Processors with Explicit Multithreading, UNGERER, ROBIC, & SILC, © 2003 ACM, ACM Computing Surveys, Vol. 35, No. 1, March 2003, pp.
29-63, US

2. Digital Arithmetic,by Ercegovac & Lang, © 2003 Elsevier Sciences (USA), San Francisco, CA, US

3. INTRODUCING THE IA-64 ARCHITECTURE, by Huck, Morris, Ross, Kneis, Mulder, & Zahir, © 2000 IEEE, IEEE Micro Sept-Oct, 2000, pgs 12-23, US

4. ITANIUM PROCESSOR MICROARCHITECTURE, by Sharangpani & Arora, © 2000 IEEE, IEEE Micro Sept-Oct, 2000, pgs 24-43, US

5. Report on the Sunway TaihuLight System, by Dongarra, June 20, 2016, University of Tennessee, Oak Ridge National Laboratory, Dept. Electrical

Engineering and Computer Science, Tech Report UT-EECS-16-742, US

6. Si lar Micr Design, by Johnson, © 1991 PTR Prentice Hill, Englewood, NY, US
7. Very Long Instruction Word Architectures and the ELI-512, by Fisher, © 1983 Association of Computing Machinery (ACM), US
8. “Product Brief Intel Xeon Processor D-1500 Product Family”, by Intel Corporation, down- loaded April 4, 2016, from, https://www-ssl.intel.com/

content/www/us/en/processors/xeon/xeon-technical-resources.html , US

Systems Analysis and Engineering

1. Discovery in Basic Energy Sciences: The Role of Computing at the Extreme Scale, Sponsored by DOE, Office of Basic Energy Sciences, and Office of
Advanced Scientific Computing Research, report from meeting August 13-15, 2009, US
2. Top Ten Exascale Research Challenges, DOE-ASCAC Subcommittee Report, (Feb 10, 2014), US

Thank you. Are there any questions?

86

