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SMP Cores Enable 
Virtual VLIW Space
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A VLIW instruction memory supporting these same eight, independent 
operations requires a much larger VLIW memory of 64 instructions.

SMP cores make VLIW practical.

For example, assume the  sequential processes and the parallel processes
 of an Amdahl-compliant program have eight, separately accessible, local, 
process-owned  instructions.
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Power Management and Monitoring
in SMP Cores
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The process state calculator generates a usage vector for each process.
This usage vector indicates which instructed resources are owned, and used, 
by a process on each execution wave front.

A gated resource power is generated by the power gate in response to the 
Use bit of the usage vector for an instructed resource. 

The instructed resource uses the gated resource power as the execution wave front 
traverses the instructed resource. 

Some implementations may gate the clock to e�ect control of the power.



Transforming a Microprocessor’s Superscalar 
Interpreter into a Compile-time Utility

An Execution Wave Front is initiated on each clock cycle.
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A Simultaneous Multi-Processor (SMP) core

Application compatibility is achieved by insuring the SMP core modules are semantically compatible 
with an existing superscalar microprocessor. 
Each core module includes �oating point and integer typed SMP cores.

Semantic compatiblity
Semantic compatibility is achieved by using  two targets:

1) a superscalar microprocessor
2) a core, or module of cores

Three components of the technical collateral of the superscalar microprocessor 
are used to create the semantically compatible core module of typed SMP cores:

1) A behavioral model of its superscalar interpreter.
2) A Register Transfer Layer (RTL) model of its data processing resources.
3) The veri�cation and test sets used to con�rm the microprocessor for production.

Source code written in the microprocessor assembly language generates executible programs 
for the two targets. 
If every assembly program, when compiled and loaded into these two targets, 
generates the same output stream, in response to the same input stream, then the two targets 
are semantically compatible.

A semantically compatible SMP core can replace a superscalar microprocessor.
SMP cores use substantially less power and take up a fraction of the silicon.

Application compatibility 
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Software Application Development Process

Today and Tomorrow
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Creating Semantically Compatible 
Core Modules

Transformed into SMP technology
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Transforming the superscalar interpreter into a compile-time utility 
 removes the need for instruction caching.

SMP Thread Collection Utility 
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Today, a thread of execution is the smallest sequence of program instructions that can be managed 
 independently by a scheduler in an operating system.  In this architecture, threads are the 
 operations of at least one typed core in a PEM.  The application program is transformed into 
 threads at compile-time, by a thread-collecting utility, based upon a superscalar interpreter.
 
In the QSigma architecture, threads are operations of at least one typed core.
  An application program is transformed at compile-time into the computer 
 and its operating environment.



Algorithm State Machine
(not your Dad’s FPGA!)

Program (s) 
+ 

SMP Computer 
= 

 Algorithm State Machine
Network

Merging processes in terms of their respective process 
states creates a merged process of the merged thread. 
The highest priority process state is the top process state, 
and has a minimal probability. Merging a corresponding process 
means listing the highest priority state of each process in the merged process.  
The process merging continues in this way.

After collecting the threads, the intermediate program representation is analyzed.
This analyses determines whether sub-programs should be merged into the invoking thread, 
or separately instantiated. 
For example, an 8 by 8 matrix inverse is small and performs quickly enough to optimally merge its 
thread into the invoking thread. However, a 32 by 32 matrix requires, roughly, 32K clock cycles. 

Compile-time merging and placement of threads 
maximizes system throughput with no runtime overhead.
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Threads
An Example

Three computer instructions about to enter a microprocessor superscalar interpreter

Assume that each micro-operation depends on �nishing the result of the previous 
micro-operation of the instruction before it can run.
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The Non-Linear Function Accelerator (NLA)

The QSigma NLA features a log2 calculator which performs 
an exact factorization of a double precision mantissa with 2 guard bits.
 
 The logarithms of the factors are generated by table lookup with 6+ bits of 
 additional fractional part, so that calculations such  as X^64 to X^-64 can be 
 carried out accurately to within 1/2 the least signi�cant guard bit. 

 The log2 calculator, and subsequent NLA components, enable an exact 
 representation of log2(0) as negative in�nity, and insure that within the NLA, 
 negative in�nity added to any other log domain number yields negative in�nity.

2^(negative in�nity) is exactly 0.0 in the �oating point core, removing one of the 
persistent problems with log domain calculators.

The NLA incorporates the correct circuitry to calculate the exponential of a complex 
number accurate to within 1/2 the LSB of the mantissa.
 

The NLA improves performance for :
 Log and exponential functions by 10X. 
 General polynomial and rational function evaluation by 2X-3X.
 Exponentials of complex numbers by 3X-4X.

The NLA augmentation doubles performance for matrix multiplied by matrix operations.
 For example, performance of Block LU Decomposition in Linpack is doubled 
 with the addition of the NLA.

A one exa�op computer becomes a two exa�op computer when the NLA  is used in 
each core module.    



The STAR Message Protocol
An Introduction

Simultaneous Transmit and Receive (STAR) Message

Error 
Detection 
Correction 

(40 bits)

Package

Data payload 
(128 bit std + 5 bit extension)

Context (32 bits)

The STAR message protocol transmits and receives a STAR message on every local clock cycle, 
 except when responding to an uncorrectable error on reception.
The response to such errors is automatic channel component replacement within, at most,
  a microsecond.
Assuming a 1 ns clock, 200 Gbits/second can be delivered, and sent, on each STAR channel.
The context of the message is interpreted at every STAR message core to determine its disposition 
 and transfer. 
The context, and its interpretation, is under complete control of the program.

Data payload std 0

FP Dbl Num 1 FP Dbl Num 2

Ext bit 4 = 0

Ext bit 0:1 =
guard bits 1

Ext bit 2:3 =
guard bits 2

Example of data payload supporting 2 guard bits for each of two double precision numbers.

Data payload std 1

FP dbl num 1 FP index list

Ext bit 4 = 1
Ext bit 0:1 = ‘00

Ext bit 2:3 =
guard bits for FP Dbl Num 1

Double precision number and index list suitable for: 
 HPL pivot entry calculations
 Multi-grid operations
 Other sparse matrix operations



Star Messaging and MPI
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STAR messages take only one clock cycle to be sent and received

In MPI the long message can block the short message at a router transfer point

STAR messages are all the same length
 
STAR messages traverse each communication resource pipe 
in a single clock 
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Multi-�ber STAR Message Channel 
An Example
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Optical �ber 3 serves as a primary delivery vehicle for the STAR messaging when the timing 
 at the transceivers is about 100 GHz.

Optical Fiber 4 is a spare, possibly powered down until needed.

TS k stands for the Training Sequence for the STAR Msg k, for k = 1 to 7.
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The STAR Bundle and STAR Trinary Router

Each node can send and receive16 data payloads every clock (1 ns), with the STAR Trinary Router (STR).

Each node has a data bandwidth of 2 Terabits/sec in and out.
 
A node can be a PEM, or a chip.

STRs are implemented inside a chip as a communication module paired with a PEM.
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The STAR Mostly Binary Network Interface
 for HPC

Binary trees leave HPC system components vulnerable 
 to communications bottlenecks.

By  extending the network to a Mostly Binary Tree, chipstacks, 
 optical PCBs, etc, can have dual, or better, interfaces.

There are 30 to 33 Star bundles available
 at each cabinet to interface to the datacenter.

Each optical channel is physically compatible to ethernet, 
 therefore the data STAR channels of each STAR bundle 
 can interface to 32 to 48 Gbit ethernet networks.

Exascale can be achieved with 256 cabinets.
Each cabinet can simultaneously communicate with up to 1K 
 ethernet networks of 100 Gbit/second bandwidth.

The Star Mostly Binary Interface canonically resolves bandwidth 
 delivery to and from supercomputers for years to come.  



Architectural Support for Fault Resilience

Four degrees of freedom in managing the STAR communication network support
 automatic local fault resilience:

 1)  The opto-transceiver clocks can be slowed down.
 
 2)  A faulty transmitter link to a receiver in one direction, can be replaced by the spare 
       optical �ber in that direction.

 3)  A faulty STAR message channel instance in one, or both, directions can be replaced 
       with the spare STAR message channel.

 4)  Two opto-�bers in a STAR message channel are operated, rather than three, 
             lowering the bandwidth  to two STAR messages every three clock cycles. 

Multiple layers of arithmetic provide support for automatic local fault resilience:

  Each C-adder incorporates two fully functional  2 operand adders, and can be con�gured 
 to operate on just one adder, should the other be faulty.
  
 Each Floating Point (FP) 2 operand adder has two identical stages, so if one of them is faulty, 
 the other can do its job.

 Each 2 operand multiplier has two identical stages,  if one is faulty, the other can do its job.
   
 The FP multiplier can either be augmented by the Non-Linear Accelerator (NLA), or be 
 replaced should it be faulty. 
 

Additional fault resilience :

  Each pair of PEMs have a spare core module.



Anticipation, not Hindsight

In the QSigma architecture, memory access is anticipated, not initiated after it is requested,
in hindsight, by a cache fault.
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anticipated as

transfer request 

Memory 
read

request 

Memory
read 

completed

Time

Data transferred before request

No time wasted

By anticipating the memory access, the system can fetch data before it is requested, 
preventing the data processing resources from stalling.



Today’s Vulnerable Data Center
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Block diagram of a vulnerable data center.

The external portal does not usually separate data related information from task/instruction related 
information, so any mistake in its �rewall can allow hidden threats into the system.
 
The internal network does not separate the data related information from task/instruction related 
information, so any hidden threat has an opportunity to further in�ltrate the system.
 
Memory controllers tend to access a single memory domain, which is supposed to have subdomains 
for programs and data. Very small mistakes in a program, or operating environment, can turn 
hidden threats into installed threats, where they can persist inde�nitely.

Flash drives are another entry point for hidden threats. They also operate a single memory domain 
of �les, which can also hide threats.

The internal network of these data centers interfaces with merged message handlers which deliver 
the hidden threat into memory, creating the installed threat. The message handler can also send 
messages containing the hidden threat elsewhere.
 
Today’s microprocessors use a merged cache which can readily load a hidden threat into its memory. 
After the program error has occurred, the microprocessor then fetches and executes the installed threat. 



Tomorrow’s Invulnerable Data Center

Block diagram of an invulnerable data center.

The invulnerable data center interfaces to less secure, general purpose, networks through a new interface. 

This new interface operates two primary portals to two separate internal networks. 
One portal supports access to task management and program con�guration.
A second portal supports data transfers.

The invulnerable data center physically separates data memory, task-instruction memory, 
and their memory controllers.

There are no transfer paths from one form of memory to the other.

No data-related operation can alter a task, or an instruction, residing in the task-instruction memory.
This organization removes the opportunity for viruses and rootkits to infect SMP cores, handhelds 
and networked sensors.
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An Exascale Recon�gurable Compile-time 
Superscalar Computer

Systematically built from the fundamentals of hardware, software, systems, and algorithms interacting 
together, beyond co-design, the QSigma architecture is quad-designed. 

(1) Consumes minimal power because the SMP cores replace instruction caching and superscalar 
 interpretation with a compile-time thread collection utility. This innovation, along with the 
 STAR communication components, means the QSigma data processor chips require less than 
 10% of the circuitry needed by contemporary parallel processor chips to deliver comparable 
 performance. Any circuit not in use, in any single clock cycle, is automatically powered o�.

(2) Maintains maximum system reliability through automated fault resiliant operation of arithmetic 
 components, and communication channels, with support for runtime system testing as an 
 automatic part of the operating environment.

(3) Maintains application compatibility because the SMP cores are semantically compatible with an 
 existing superscalar microprocessor.  Assembly language programs can target the microprocessor 
 and the SMP cores.
 
(4) Supports the maximum number of super computer programs because this recon�gurable 
 architecture transforms programs into an Algorithm State Machine made of semantically 
 compatible core resources. 
 Every program recon�gures the computer into it’s own Algorithm State Machine.

(5) Provides maximum scalability through the use of consistent small component ensembles. 
 These ensembles scale seamlessly from inside chips to a computer �oor of cabinets. 

(6) Provides far greater security because data access operations cannot alter instruction memories, 
 removing the standard mechanism of attack by viruses and rootkits.

QSigma’s recon�gurable compile-time superscalar computer can be built with today’s technology, 
and will deliver essentially linear performance improvements for any number of cores, data processor 
chips, and/or cabinets, from a test chip, to a super computer, to an exascale computer, and beyond.
 
QSigma’s recon�gurable compile-time superscalar computer can integrate seamlessly with exotic 
materials, such as memristers and molecular gates, with only minor changes to ported programs.
Exascale can be achieved with 256 cabinets.

QSigma’s architecture can achieve exa�op performance while:
    (1) Consuming minimum power,  
  (2) Maintaining maximum system reliability,
  (3) Maintaining application compatibility,  
  (4) Supporting the maximum number of super computer programs, 
  (5) Providing maximum scalability, and 
  (6) Providing far greater security.
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