
QSigma, Inc.
a research company

Fundamental solutions to fundamental computing problems

Recon�gurable
Compile-Time

Superscalar Computer
Architecture

www.qsigmainc.com

© 2016 by Earle Jennings. All Rights Reserved.

Earle Jennings, CTO

QSigma, Inc.

www.qsigmainc.com

earle.jennings@qsigmainc.com

SMP Cores Enable
Virtual VLIW Space

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 1

First
instance 1

First
instance 1

First
instance 1

First
instance 1

First
instance 1

First
instance 1

First
instance 1

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 7

First
instance 7

First
instance 7

First
instance 7

First
instance 7

First
instance 7

First
instance 7

First
instance 7

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 5

First
instance 5

First
instance 5

First
instance 5

First
instance 5

First
instance 5

First
instance 5

First
instance 5

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 3

First
instance 3

First
instance 3

First
instance 3

First
instance 3

First
instance 3

First
instance 3

First
instance 3

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 0

First
instance 0

First
instance 0

First
instance 0

First
instance 0

First
instance 0

First
instance 0

First
instance 0

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 6

First
instance 6

First
instance 6

First
instance 6

First
instance 6

First
instance 6

First
instance 6

First
instance 6

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6

Second
instance 7

First
instance 4

First
instance 4

First
instance 4

First
instance 4

First
instance 4

First
instance 4

First
instance 4

First
instance 4

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 3

Second
instance 4

Second
instance 5
Second
instance 6
Second
instance 7

First
instance 2

First
instance 2

First
instance 2

First
instance 2

First
instance 2

First
instance 2

First
instance 2

First
instance 2

A VLIW instruction memory supporting these same eight, independent
operations requires a much larger VLIW memory of 64 instructions.

SMP cores make VLIW practical.

For example, assume the sequential processes and the parallel processes
 of an Amdahl-compliant program have eight, separately accessible, local,
process-owned instructions.

First
instance 0

First
instance 1

First
instance 2

First
instance 4

First
instance 6

First
instance 3

First
instance 5

First
instance 7

Second
instance 0

Second
instance 1

Second
instance 2

Second
instance 4

Second
instance 6

Second
instance 3

Second
instance 5

Second
instance 7

First local
process index

Second local
process index

Power Management and Monitoring
in SMP Cores

Simultaneous
process

calculator

Process
calculator

0

Usage vector

Overall
usage
vector

calculator

Process direction 0

Process index 0

Usage vector 0

Process
calculator

3

Process direction 3

Usage vector 3

Process index 3

Gated resource power
Instructed resourcePower

gate

Power

Use bit

The process state calculator generates a usage vector for each process.
This usage vector indicates which instructed resources are owned, and used,
by a process on each execution wave front.

A gated resource power is generated by the power gate in response to the
Use bit of the usage vector for an instructed resource.

The instructed resource uses the gated resource power as the execution wave front
traverses the instructed resource.

Some implementations may gate the clock to e�ect control of the power.

Transforming a Microprocessor’s Superscalar
Interpreter into a Compile-time Utility

An Execution Wave Front is initiated on each clock cycle.

Range clamp in

Rcp/Rsq input

Fin k

STAR in k

Write 0

Write 1

Write 2

Write 3

Pipe four

Task-instruction controller

Pipe one

Memory
access

processor

A Simultaneous Multi-Processor (SMP) core

Application compatibility is achieved by insuring the SMP core modules are semantically compatible
with an existing superscalar microprocessor.
Each core module includes �oating point and integer typed SMP cores.

Semantic compatiblity
Semantic compatibility is achieved by using two targets:

1) a superscalar microprocessor
2) a core, or module of cores

Three components of the technical collateral of the superscalar microprocessor
are used to create the semantically compatible core module of typed SMP cores:

1) A behavioral model of its superscalar interpreter.
2) A Register Transfer Layer (RTL) model of its data processing resources.
3) The veri�cation and test sets used to con�rm the microprocessor for production.

Source code written in the microprocessor assembly language generates executible programs
for the two targets.
If every assembly program, when compiled and loaded into these two targets,
generates the same output stream, in response to the same input stream, then the two targets
are semantically compatible.

A semantically compatible SMP core can replace a superscalar microprocessor.
SMP cores use substantially less power and take up a fraction of the silicon.

Application compatibility

Pipe zero

Loop out 30-33

Loop out 00-03

Process index 0

Process state
calculator 0

Process index 3

Process state
calculator 3

Rd 1 Q0 & Q1

Rd 0 Q0 & Q1

Rd 2 Q0 & Q1

Rd 3 Q0 & Q1

Pipe two

Fout k
Queue k,0:Nq

Range clamp out

Rcp/Rsq output

C-adder 0

C-adder 1

Pipe three

Multiplier

Pass
forward

0-7

STAR out k
Queue k,0:Nq

Software Application Development Process

Today and Tomorrow

ASM code

Source code

Compiler

Thread collector

Thread merge and place

DPC con�guration

System con�guration

Communication con�guration

PEM con�guration

Thread source code

Linkage editor

Relocatables

Loaded �le(s)

ASM code

Source code

Compiler

Assembler

Software
Development

Tomorrow

Software
Development

Today

Creating Semantically Compatible
Core Modules

Transformed into SMP technology

Semantically compatible
SMP cores

Thread collection
veri�cation set

Veri�ed thread
collector utility

Thread collector
compile-time utility

Semantic compatibility
veri�cation set

Veri�ed semantically
compatible SMP cores

Veri�ed semantically
compatible PEM

The veri�cation and test sets used
to make today’s microprocessor

ASM Code

Input stream

Target 1
microprocessor

Target 2
SMP core module

Output stream 1 Output stream 2

These are essentially equal!

Application
one

Application
two

Transforming the superscalar interpreter into a compile-time utility
 removes the need for instruction caching.

SMP Thread Collection Utility

Yes Yes

Yes Yes

2nd-coef read,
2nd-pass data

2nd write
accumulate

2nd accumulate

Max-in queue

Max-fdbk 2
to max-n

C Max
Feedback in

Instructed
Resource

Dot Product
Accumulate

Process

First Filter
Accumulate

 Process

Second Filter
Accumulate

Process

Calculate
Maximum

Process

In queues

Feedback queues

Multiplier

C-adder 1

Feedback in

C-adder 0 Yes Yes

Output portal Yes Yes

Memory read
queue

Tap Read,
Fir in

Memory write
ports

1st write
accumulate

1st accumulateDot accumulate
Feedback in

Product fdbk 1,
Dot accum 1 to n

Thread Collector Output Process Ownership

Today, a thread of execution is the smallest sequence of program instructions that can be managed
 independently by a scheduler in an operating system. In this architecture, threads are the
 operations of at least one typed core in a PEM. The application program is transformed into
 threads at compile-time, by a thread-collecting utility, based upon a superscalar interpreter.

In the QSigma architecture, threads are operations of at least one typed core.
 An application program is transformed at compile-time into the computer
 and its operating environment.

Algorithm State Machine
(not your Dad’s FPGA!)

Program (s)
+

SMP Computer
=

 Algorithm State Machine
Network

Merging processes in terms of their respective process
states creates a merged process of the merged thread.
The highest priority process state is the top process state,
and has a minimal probability. Merging a corresponding process
means listing the highest priority state of each process in the merged process.
The process merging continues in this way.

After collecting the threads, the intermediate program representation is analyzed.
This analyses determines whether sub-programs should be merged into the invoking thread,
or separately instantiated.
For example, an 8 by 8 matrix inverse is small and performs quickly enough to optimally merge its
thread into the invoking thread. However, a 32 by 32 matrix requires, roughly, 32K clock cycles.

Compile-time merging and placement of threads
maximizes system throughput with no runtime overhead.

Dot Product
Accumulation

Process

DPaccum6

DPaccum5

DPaccum4

DPaccum3

DPaccum2

DPaccum1

DPaccum0

1st Filter
Accumulation

Process

FIRaccum0

FIRaccum2

FIRaccum1

2nd Filter
Accumulation

Process

FFTaccum3

FFTaccum2

FFTaccum1

FFTaccum0

Max in &
Accumulation

Process

Max7

Max6

Max5

Max4

Max3

Max2

Max1

Max0

Merged
Accumulation

Process

DPaccum4

DPaccum5

DPaccum6

FIRaccum2

FIRaccum1

FFTaccum3

FFTaccum2

Max6

Max7

Lower blocks

Diagonal blocks

Upper blocks

The result of merging and placement
of threads implementing block LU

decomposition (Linpack)

Threads
An Example

Three computer instructions about to enter a microprocessor superscalar interpreter

Assume that each micro-operation depends on �nishing the result of the previous
micro-operation of the instruction before it can run.

Computer instruction 2
1000-2

Computer instruction 1
1000-1

Superscalar interpreter

Computer instruction 3
1000-3

Computer instruction 1
1000-1

Micro-op 1 1010-1
for Rsrc A

Micro-op 3 1010-3
for Rsrc C

Micro-op 2 1010-2
for Rsrc B

Computer instruction 2
1000-2

Micro-op 1 1020-1
for Rsrc B

Micro-op 3 1020-3
for Rsrc A

Micro-op 2 1020-2
for Rsrc C

Micro-op 1 1030-1
for Rsrc C

Micro-op 3 1030-3
for Rsrc B

Micro-op 3 1030-2
for Rsrc A

Computer instruction 3
1000-3

The Non-Linear Function Accelerator (NLA)

The QSigma NLA features a log2 calculator which performs
an exact factorization of a double precision mantissa with 2 guard bits.

 The logarithms of the factors are generated by table lookup with 6+ bits of
 additional fractional part, so that calculations such as X^64 to X^-64 can be
 carried out accurately to within 1/2 the least signi�cant guard bit.

 The log2 calculator, and subsequent NLA components, enable an exact
 representation of log2(0) as negative in�nity, and insure that within the NLA,
 negative in�nity added to any other log domain number yields negative in�nity.

2^(negative in�nity) is exactly 0.0 in the �oating point core, removing one of the
persistent problems with log domain calculators.

The NLA incorporates the correct circuitry to calculate the exponential of a complex
number accurate to within 1/2 the LSB of the mantissa.

The NLA improves performance for :
 Log and exponential functions by 10X.
 General polynomial and rational function evaluation by 2X-3X.
 Exponentials of complex numbers by 3X-4X.

The NLA augmentation doubles performance for matrix multiplied by matrix operations.
 For example, performance of Block LU Decomposition in Linpack is doubled
 with the addition of the NLA.

A one exa�op computer becomes a two exa�op computer when the NLA is used in
each core module.

The STAR Message Protocol
An Introduction

Simultaneous Transmit and Receive (STAR) Message

Error
Detection
Correction

(40 bits)

Package

Data payload
(128 bit std + 5 bit extension)

Context (32 bits)

The STAR message protocol transmits and receives a STAR message on every local clock cycle,
 except when responding to an uncorrectable error on reception.
The response to such errors is automatic channel component replacement within, at most,
 a microsecond.
Assuming a 1 ns clock, 200 Gbits/second can be delivered, and sent, on each STAR channel.
The context of the message is interpreted at every STAR message core to determine its disposition
 and transfer.
The context, and its interpretation, is under complete control of the program.

Data payload std 0

FP Dbl Num 1 FP Dbl Num 2

Ext bit 4 = 0

Ext bit 0:1 =
guard bits 1

Ext bit 2:3 =
guard bits 2

Example of data payload supporting 2 guard bits for each of two double precision numbers.

Data payload std 1

FP dbl num 1 FP index list

Ext bit 4 = 1
Ext bit 0:1 = ‘00

Ext bit 2:3 =
guard bits for FP Dbl Num 1

Double precision number and index list suitable for:
 HPL pivot entry calculations
 Multi-grid operations
 Other sparse matrix operations

Star Messaging and MPI

Time to �ll bu�er

Start
�lling
bu�er

Return
from
MPI_send

Start
MPI_send

function
call

Start
sending
bu�er and
envelope

Delay with MPI from start of �lling bu�er until message is sent

Time at sending processor with MPI

Start
MPI_recv
function

call

Return
from

MPI_recv

Start
message
reception

Bu�er
freed

Delay from start of reception until bu�er can be processed

Time at receiving processor

Time to �ll bu�er and envelope Time to clear bu�er

STAR messages take only one clock cycle to be sent and received

In MPI the long message can block the short message at a router transfer point

STAR messages are all the same length

STAR messages traverse each communication resource pipe
in a single clock

Long message
Router
transfer

point

Short message

Multi-�ber STAR Message Channel
An Example

1st transceiver 4

1st transceiver 3

1st transceiver 2

1st transceiver 1

2nd transceiver 4

2nd transceiver 3

2nd transceiver 2

2nd transceiver 1

Optical �ber 4

Optical �ber 2

Optical �ber 3

Optical �ber 1

Example of a multi-�ber STAR message channel

Transmitting STAR messages on this channel

STAR
msg

2

STAR
msg

3

STAR
msg

1

STAR
msg

5

STAR
msg

6

STAR
msg

7

STAR
msg

4

STAR msg 5STAR msg 2

STAR msg 6STAR msg 3

STAR msg 1 STAR msg 4 STAR msg 7

Optical �ber 3 serves as a primary delivery vehicle for the STAR messaging when the timing
 at the transceivers is about 100 GHz.

Optical Fiber 4 is a spare, possibly powered down until needed.

TS k stands for the Training Sequence for the STAR Msg k, for k = 1 to 7.

TS 6

Optical Fiber 1
TS 1

Optical Fiber 2
TS 2

Optical Fiber 3
TS 3

TS 5

TS 4 TS 7

STAR channel core 1 STAR channel core 2

The STAR Bundle and STAR Trinary Router

Each node can send and receive16 data payloads every clock (1 ns), with the STAR Trinary Router (STR).

Each node has a data bandwidth of 2 Terabits/sec in and out.

A node can be a PEM, or a chip.

STRs are implemented inside a chip as a communication module paired with a PEM.

STAR Bundle

Data STAR channels

Control and Status STAR Channels

Task msg channel
Spare STAR msg channel instance

Transfer request msg channel

Spare STAR msg channel instance STAR msg channel 16 instances

Node 1

Node 3

Node 2

Star
Trinary
Router
(STR)

STAR bundle

STAR bundle

STAR bundle

1st In dest 1 1st In dest ... 1st In dest DN1

Good data payload1 &
Destination controls 1 ER 1

SMP Channel Core (SMPC) 1

Incoming Message Processor (IMP) 1 Outgoing Message Processor (OMP) 1

Outgoing payload 1

Transmitted message 2
ECC 2; Data payload 2; Context 2

Transmitted message 1
ECC 1; Data payload 1; Context 1

Received message 1
ECC 1; Data payload 1; Context 1

Received message 2
ECC 2; Data payload 2; Context 2

Out 1 MuxIn 1 Mux

In 1 Bu�ers 1:4 Out 1 Bu�ers 1:4

1st Transmitters 1:4

2nd Transmitters 1:4

1st Receivers 1:4

STAR channel
�bers 1:4

Out 2 Bu�ers 1:4

In 2 MuxOut 2 Mux

Outgoing Message Processor (OMP) 2 Incoming Message Processor (IMP) 2

SMP Channel Core (SMPC) 2

Good data payload 2 &
Destination controls 2

Outgoing payload 2 ERI 2

2nd In dest 1

2nd In dest ...

2nd In dest InDN2

Ch
an

ne
l D

ire
ct

io
n

Tw
o

Ch
an

ne
l D

ire
ct

io
n

O
ne

2nd Receivers 1:4

In 2 Bu�ers 1:4

Star Channel Core

The STAR Mostly Binary Network Interface
 for HPC

Binary trees leave HPC system components vulnerable
 to communications bottlenecks.

By extending the network to a Mostly Binary Tree, chipstacks,
 optical PCBs, etc, can have dual, or better, interfaces.

There are 30 to 33 Star bundles available
 at each cabinet to interface to the datacenter.

Each optical channel is physically compatible to ethernet,
 therefore the data STAR channels of each STAR bundle
 can interface to 32 to 48 Gbit ethernet networks.

Exascale can be achieved with 256 cabinets.
Each cabinet can simultaneously communicate with up to 1K
 ethernet networks of 100 Gbit/second bandwidth.

The Star Mostly Binary Interface canonically resolves bandwidth
 delivery to and from supercomputers for years to come.

Architectural Support for Fault Resilience

Four degrees of freedom in managing the STAR communication network support
 automatic local fault resilience:

 1) The opto-transceiver clocks can be slowed down.

 2) A faulty transmitter link to a receiver in one direction, can be replaced by the spare
 optical �ber in that direction.

 3) A faulty STAR message channel instance in one, or both, directions can be replaced
 with the spare STAR message channel.

 4) Two opto-�bers in a STAR message channel are operated, rather than three,
 lowering the bandwidth to two STAR messages every three clock cycles.

Multiple layers of arithmetic provide support for automatic local fault resilience:

 Each C-adder incorporates two fully functional 2 operand adders, and can be con�gured
 to operate on just one adder, should the other be faulty.

 Each Floating Point (FP) 2 operand adder has two identical stages, so if one of them is faulty,
 the other can do its job.

 Each 2 operand multiplier has two identical stages, if one is faulty, the other can do its job.

 The FP multiplier can either be augmented by the Non-Linear Accelerator (NLA), or be
 replaced should it be faulty.

Additional fault resilience :

 Each pair of PEMs have a spare core module.

Anticipation, not Hindsight

In the QSigma architecture, memory access is anticipated, not initiated after it is requested,
in hindsight, by a cache fault.

Time

Memory
read

request

Memory
read

completed

Cache
Fault

Detected

Cache
Fault

Recovery

Time wasted

Hindsight:

Anticipation:

Memory read
anticipated as

transfer request

Memory
read

request

Memory
read

completed

Time

Data transferred before request

No time wasted

By anticipating the memory access, the system can fetch data before it is requested,
preventing the data processing resources from stalling.

Today’s Vulnerable Data Center

System
interface

Memory
controller with
merged data &

task-instruction
information

Internal
network

with merged
data and

task-instruction
information

Memory before

Memory after

Disk Drive

DRAM

SRAM

Merged data and
task-instruction
external stream

Flash drives

Handheld computer

Networked sensor

Today’s microprocessor

Instructions

Micro-
operations

Data

External
port

Hidden threat

Installed threat

Merged cache

Data
processor

Superscalar interpreter
and multi-thread control

Merged message handler

Block diagram of a vulnerable data center.

The external portal does not usually separate data related information from task/instruction related
information, so any mistake in its �rewall can allow hidden threats into the system.

The internal network does not separate the data related information from task/instruction related
information, so any hidden threat has an opportunity to further in�ltrate the system.

Memory controllers tend to access a single memory domain, which is supposed to have subdomains
for programs and data. Very small mistakes in a program, or operating environment, can turn
hidden threats into installed threats, where they can persist inde�nitely.

Flash drives are another entry point for hidden threats. They also operate a single memory domain
of �les, which can also hide threats.

The internal network of these data centers interfaces with merged message handlers which deliver
the hidden threat into memory, creating the installed threat. The message handler can also send
messages containing the hidden threat elsewhere.

Today’s microprocessors use a merged cache which can readily load a hidden threat into its memory.
After the program error has occurred, the microprocessor then fetches and executes the installed threat.

Tomorrow’s Invulnerable Data Center

Block diagram of an invulnerable data center.

The invulnerable data center interfaces to less secure, general purpose, networks through a new interface.

This new interface operates two primary portals to two separate internal networks.
One portal supports access to task management and program con�guration.
A second portal supports data transfers.

The invulnerable data center physically separates data memory, task-instruction memory,
and their memory controllers.

There are no transfer paths from one form of memory to the other.

No data-related operation can alter a task, or an instruction, residing in the task-instruction memory.
This organization removes the opportunity for viruses and rootkits to infect SMP cores, handhelds
and networked sensors.

External
task

portal

Internal
task

network

External
data

portal

Internal
data

network

Task-
instruction
information

Merged data and
task-instruction
external stream

Invulnerable
sensor

Invulnerable
sensor

Invulnerable
handheld

Invulnerable
handheld

Sensor data

Handheld data

Data
memory

controller

Task
memory

controller
Task

control

SMP core(s)
core modules

or PEMs or
chips

Data
without
installed
threats

Data �ash drives

Data Disk Drive

Data DRAM

Data SRAM

Task SRAM

Data
message
handler

Task DRAM

Task disk drive

Data cache (possibly)

Task �ash drives

Task
message
handler

An Exascale Recon�gurable Compile-time
Superscalar Computer

Systematically built from the fundamentals of hardware, software, systems, and algorithms interacting
together, beyond co-design, the QSigma architecture is quad-designed.

(1) Consumes minimal power because the SMP cores replace instruction caching and superscalar
 interpretation with a compile-time thread collection utility. This innovation, along with the
 STAR communication components, means the QSigma data processor chips require less than
 10% of the circuitry needed by contemporary parallel processor chips to deliver comparable
 performance. Any circuit not in use, in any single clock cycle, is automatically powered o�.

(2) Maintains maximum system reliability through automated fault resiliant operation of arithmetic
 components, and communication channels, with support for runtime system testing as an
 automatic part of the operating environment.

(3) Maintains application compatibility because the SMP cores are semantically compatible with an
 existing superscalar microprocessor. Assembly language programs can target the microprocessor
 and the SMP cores.

(4) Supports the maximum number of super computer programs because this recon�gurable
 architecture transforms programs into an Algorithm State Machine made of semantically
 compatible core resources.
 Every program recon�gures the computer into it’s own Algorithm State Machine.

(5) Provides maximum scalability through the use of consistent small component ensembles.
 These ensembles scale seamlessly from inside chips to a computer �oor of cabinets.

(6) Provides far greater security because data access operations cannot alter instruction memories,
 removing the standard mechanism of attack by viruses and rootkits.

QSigma’s recon�gurable compile-time superscalar computer can be built with today’s technology,
and will deliver essentially linear performance improvements for any number of cores, data processor
chips, and/or cabinets, from a test chip, to a super computer, to an exascale computer, and beyond.

QSigma’s recon�gurable compile-time superscalar computer can integrate seamlessly with exotic
materials, such as memristers and molecular gates, with only minor changes to ported programs.
Exascale can be achieved with 256 cabinets.

QSigma’s architecture can achieve exa�op performance while:
 (1) Consuming minimum power,
 (2) Maintaining maximum system reliability,
 (3) Maintaining application compatibility,
 (4) Supporting the maximum number of super computer programs,
 (5) Providing maximum scalability, and
 (6) Providing far greater security.

	V2_Cover.
	V2_Intro SMP
	V2_VLIW
	V2_ Power Management and Monitoring
	V2_Transforming...
	V2_PEMs
	V2_software development
	V2_ semantically compatible-6
	V2_Threads
	V2_Algorithm state machine
	V2_Example Threads
	V2_Thread collector output
	V2_ Subprogram example
	V2_NLA
	V2_ STAR intro
	V2_MPIand Ethernet
	V2_Multi-fiber Star channel
	V2_STAR bundle and router
	V2_STAR channel core
	V2_STAR Mostly Binary Network
	V2_Fault Resilience
	V2_Anticipation
	V2_Securityp1
	V2_Security_p2
	V2_Exascale strategy

